ResNet ARCHITECTURE Ex-12
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.keras import datasets, layers, models, losses
(x_train, y_train), (x_test, y_test)=tf.keras.datasets.mnist.load_data()
x_train = tf.pad(x_train, [[0, 0], [2,2], [2,2]])/255
x_test = tf.pad(x_test, [[0, 0], [2,2], [2,2]])/255
x_train = tf.expand_dims(x_train, axis=3, name=None)
x_test = tf.expand_dims(x_test, axis=3, name=None)
x_train = tf.repeat(x_train, 3, axis=3)
x_test = tf.repeat(x_test, 3, axis=3)
x_val = x_train[-2000:,:,:,:]
y_val = y_train[-2000:]
x_train = x_train[:-2000,:,:,:]
y_train = y_train[:-2000]
base_model = tf.keras.applications.ResNet152(weights = 'imagenet',
include_top = False,
input_shape = (32,32,3))
for layer in base_model.layers:
layer.trainable = False
x = layers.Flatten()(base_model.output)
x = layers.Dense(1000, activation='relu')(x)
predictions = layers.Dense(10, activation = 'softmax')(x)
head_model = Model(inputs = base_model.input, outputs = predictions)
head_model.compile(optimizer='adam', metrics=['accuracy'],
loss=losses.sparse_categorical_crossentropy)
history = head_model.fit(x_train, y_train,
batch_size=64,
epochs=40,
validation_data=(x_val, y_val))
fig, axs = plt.subplots(2, 1, figsize=(15,15))
axs[0].plot(history.history['loss'])
axs[0].plot(history.history['val_loss'])
axs[0].title.set_text('Training Loss vs Validation Loss')
axs[0].set_xlabel('Epochs')
axs[0].set_ylabel('Loss')
axs[0].legend(['Train','Val'])
axs[1].plot(history.history['accuracy'])
axs[1].plot(history.history['val_accuracy'])
axs[1].title.set_text('Training Accuracy vs Validation Accuracy')
axs[1].set_xlabel('Epochs')
axs[1].set_ylabel('Accuracy')
axs[1].legend(['Train', 'Val'])
result = head_model.evaluate(x_test, y_test)
print(“Loss = {}, Accuracy = {}”.format(result[0), result[1])
Comments
Post a Comment