GoogLeNet ARCHITECTURE EX-11

import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.keras import datasets, layers, models, losses
(x_train, y_train), (x_test, y_test)=tf.keras.datasets.mnist.load_data()
x_train = tf.pad(x_train, [[0, 0], [2,2], [2,2]])/255
x_test = tf.pad(x_test, [[0, 0], [2,2], [2,2]])/255
x_train = tf.expand_dims(x_train, axis=3, name=None)
x_test = tf.expand_dims(x_test, axis=3, name=None)
x_train = tf.repeat(x_train, 3, axis=3)
x_test = tf.repeat(x_test, 3, axis=3)
x_val = x_train[-2000:,:,:,:]
y_val = y_train[-2000:]
x_train = x_train[:-2000,:,:,:]
y_train = y_train[:-2000]
def inception(x,
 filters_1x1,
 filters_3x3_reduce,
 filters_3x3,
 filters_5x5_reduce,
 filters_5x5,
 filters_pool):
 path1 = layers.Conv2D(filters_1x1, (1, 1), padding='same', activation='relu')(x)
 path2 = layers.Conv2D(filters_3x3_reduce, (1, 1), padding='same',
activation='relu')(x)
 path2 = layers.Conv2D(filters_3x3, (1, 1), padding='same', activation='relu')(path2)

 path3 = layers.Conv2D(filters_5x5_reduce, (1, 1), padding='same',
activation='relu')(x)
 path3 = layers.Conv2D(filters_5x5, (1, 1), padding='same', activation='relu')(path3)
 path4 = layers.MaxPool2D((3, 3), strides=(1, 1), padding='same')(x)
 path4 = layers.Conv2D(filters_pool, (1, 1), padding='same',
activation='relu')(path4)
 return tf.concat([path1, path2, path3, path4], axis=3)
inp = layers.Input(shape=(32, 32, 3))
input_tensor = layers.experimental.preprocessing.Resizing(224, 224,
interpolation="bilinear", input_shape=x_train.shape[1:])(inp)
x = layers.Conv2D(64, 7, strides=2, padding='same', activation='relu')(input_tensor)
x = layers.MaxPooling2D(3, strides=2)(x)
x = layers.Conv2D(64, 1, strides=1, padding='same', activation='relu')(x)
x = layers.Conv2D(192, 3, strides=1, padding='same', activation='relu')(x)
x = layers.MaxPooling2D(3, strides=2)(x)
x = inception(x,
 filters_1x1=64,
 filters_3x3_reduce=96,
 filters_3x3=128,
 filters_5x5_reduce=16,
 filters_5x5=32,
 filters_pool=32)
x = inception(x,
 filters_1x1=128,
 filters_3x3_reduce=128,
 filters_3x3=192,
 filters_5x5_reduce=32,
 filters_5x5=96,
 filters_pool=64)
x = layers.MaxPooling2D(3, strides=2)(x)
x = inception(x,
 filters_1x1=192,
 filters_3x3_reduce=96,
 filters_3x3=208,
 filters_5x5_reduce=16,
 filters_5x5=48,
 filters_pool=64)
aux1 = layers.AveragePooling2D((5, 5), strides=3)(x)
aux1 = layers.Conv2D(128, 1, padding='same', activation='relu')(aux1)
aux1 = layers.Flatten()(aux1)
aux1 = layers.Dense(1024, activation='relu')(aux1)
aux1 = layers.Dropout(0.7)(aux1)
aux1 = layers.Dense(10, activation='softmax')(aux1)
x = inception(x,
 filters_1x1=160,
 filters_3x3_reduce=112,

 filters_3x3=224,
 filters_5x5_reduce=24,
 filters_5x5=64,
 filters_pool=64)
x = inception(x,
 filters_1x1=128,
 filters_3x3_reduce=128,
 filters_3x3=256,
 filters_5x5_reduce=24,
 filters_5x5=64,
 filters_pool=64)
x = inception(x,
 filters_1x1=112,
 filters_3x3_reduce=144,
 filters_3x3=288,
 filters_5x5_reduce=32,
 filters_5x5=64,
 filters_pool=64)
aux2 = layers.AveragePooling2D((5, 5), strides=3)(x)
aux2 = layers.Conv2D(128, 1, padding='same', activation='relu')(aux2)
aux2 = layers.Flatten()(aux2)
aux2 = layers.Dense(1024, activation='relu')(aux2)
aux2 = layers.Dropout(0.7)(aux2)
aux2 = layers.Dense(10, activation='softmax')(aux2)
x = inception(x,
 filters_1x1=256,
 filters_3x3_reduce=160,
 filters_3x3=320,
 filters_5x5_reduce=32,
 filters_5x5=128,
 filters_pool=128)
x = layers.MaxPooling2D(3, strides=2)(x)
x = inception(x,
 filters_1x1=256,
 filters_3x3_reduce=160,
 filters_3x3=320,
 filters_5x5_reduce=32,
 filters_5x5=128,
 filters_pool=128)
x = inception(x,
 filters_1x1=384,
 filters_3x3_reduce=192,
 filters_3x3=384,
 filters_5x5_reduce=48,
 filters_5x5=128,
 filters_pool=128)
x = layers.GlobalAveragePooling2D()(x)
x = layers.Dropout(0.4)(x)
out = layers.Dense(10, activation='softmax')(x)

model = Model(inputs = inp, outputs = [out, aux1, aux2])
model.compile(optimizer='adam', loss=[losses.sparse_categorical_crossentropy,
losses.sparse_categorical_crossentropy, losses.sparse_categorical_crossentropy],
loss_weights=[1, 0.3, 0.3], metrics=['accuracy'])
history = model.fit(x_train, [y_train, y_train, y_train], validation_data=(x_val, [
y_val, y_val, y_val]), batch_size=64, epochs=40)
fig, axs = plt.subplots(2, 1, figsize=(15,15))
axs[0].plot(history.history['loss'])
axs[0].plot(history.history['val_loss'])
axs[0].title.set_text('Training Loss vs Validation Loss')
axs[0].set_xlabel('Epochs')
axs[0].set_ylabel('Loss')
axs[0].legend(['Train','Val'])
axs[1].plot(history.history['dense_4_accuracy'])
axs[1].plot(history.history['val_dense_4_accuracy'])
axs[1].title.set_text('Training Accuracy vs Validation Accuracy')
axs[1].set_xlabel('Epochs')
axs[1].set_ylabel('Accuracy')
axs[1].legend(['Train', 'Val'])
model.evaluate(x_test, y_test)

Comments

Popular posts from this blog

Naturally Simulated Prosthetic Arm With Electro Myo Grapy(EMG)-Robotic Arm (Product Creation):

SEQUENCE MODEL EX-13

IOT based Home automation Project Controlled by Google Assistant--Product Creation