RECURRENT NEURAL NETWORK EX-14

import tensorflow as tf
import tensorflow.keras.layers as KL
import matplotlib.pyplot as plt
# Dataset
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train/255.0, x_test/255.0
# Model
inputs = KL.Input(shape=(28, 28))
# For RNN
x = KL.SimpleRNN(64, activation ='relu')(inputs)
outputs = KL.Dense(10, activation="softmax")(x)
model = tf.keras.models.Model(inputs, outputs)
model.summary()
model.compile(optimizer="adam",
 loss="sparse_categorical_crossentropy",
 metrics=["acc"])
history = model.fit(x_train, y_train, epochs=5)
plt.plot(history.history['loss'])
plt.plot(history.history['acc'])
plt.title("accuracy vs loss")
plt.xlabel('Epochs')
plt.legend(['Loss', 'Accuracy'])
test_loss, test_acc = model.evaluate(x_test, y_test)

print("Loss: {0} - Acc: {1}".format(test_loss, test_acc))  

Comments

Popular posts from this blog

Naturally Simulated Prosthetic Arm With Electro Myo Grapy(EMG)-Robotic Arm (Product Creation):

IOT based Home automation Project Controlled by Google Assistant--Product Creation

SEQUENCE MODEL EX-13