LONG SHORT TERM MEMORY EX-15
import tensorflow as tf import tensorflow.keras.layers as KL import matplotlib . pyplot as plt # Dataset mnist = tf .keras.datasets.mnist ( x_train , y_train ), ( x_test , y_test ) = mnist .load_data() x_train , x_test = x_train / 255.0 , x_test / 255.0 # Model inputs = KL .Input( shape =( 28 , 28 )) # For RNN x = KL .LSTM( 64 , activation = 'relu' )( inputs ) outputs = KL .Dense( 10 , activation = "softmax" )( x ) model = tf .keras.models.Model( inputs , outputs ) model .summary() model .compile( optimizer = "adam" , loss = "sparse_categorical_crossentropy" , metrics =[ "acc" ]) history = model .fit( x_train , y_train , epochs = 5 ) plt . plot ( history .history[ 'loss' ]) plt . plot ( history .history[ 'acc' ]) plt . title ( "accuracy vs loss" ) plt . xlabel ( 'Epochs' ) plt . legend ([ 'Loss' , 'Accuracy' ]) test_loss , test_acc = model .evaluate( x_test , y_te...